
Seitan
A plant-based recipe against syscall anxiety

Stefano Brivio
Principal Software
Engineer

Alice Frosi
Principal Software
Engineer

Agenda

1. Privileged operations, seccomp, containers

2. Seitan

3. Demo

4. Questions, and maybe answers!

System calls and privileged actions

process

system call

kernel

System calls are the essential abstraction
representing requests for system services and
access to resources on most modern operating
systems

A number of security models are based on denying
or permitting system calls, depending on user
privileges, capabilities, context, etc.

$ strace -e finit_module /sbin/modprobe evil_things
finit_module(3, "", 0) = -1 EPERM (Operation not permitted)
modprobe: ERROR: could not insert 'evil_things': Operation not permitted
+++ exited with 1 +++

$ strace -e openat touch my_own_files
openat(AT_FDCWD, "my_own_files", O_WRONLY|O_CREAT|O_NOCTTY|O_NONBLOCK, 0666) = 3
+++ exited with 0 +++

What we want to improve
Enable users of container and virtualisation engines to grant fewer privileges to processes,
with a mechanism to allow just the few privileged operations they need:
● Creating a tun device: ioctl(…, TUNSETIFF, …) requires CAP_NET_ADMIN, which implies

complete control of network resources
● Setting scheduler policies for one process: sched_setscheduler() requires CAP_SYS_NICE,

which can be used to CPU-starve any process

Enhance granularity and control over resource access mediated by system calls
● CAP_MKNOD is often granted to container engines, but it enables creation of any device

node
● mount a specific volume: often via ad-hoc RPCs to avoid granting broad capabilities

Access control for resources:
● connecting to privileged daemons, or opening files/devices, with per-container checks

https://github.com/kubevirt/kubevirt/pull/8750
https://github.com/cri-o/cri-o/issues/3872

State of the art

Seccomp BPF

Seccomp BPF (SECure COMPuting with
Berkeley Packet Filters) is a Linux
kernel feature offering basic system call
filtering to reduce the exposed kernel
surface available to applications

…but it can only accept, block, or log
calls, and it doesn’t dereference pointer
arguments to process memory.

process

system call

SECCOMP_RET_...
 KILL_PROCESS
 ERRNO
 LOG
 ALLOW

BPF filter

kernel

Seccomp BPF (Secure Compute with filters)

seccomp(2)

https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://man7.org/linux/man-pages/man2/seccomp.2.html

Seccomp notifiers

Seccomp notifiers tell an userspace
application about filtered system
calls, along with their arguments.

The supervising process replies with
return and error values, and tells the
kernel if the system call should
actually be issued. File descriptors can
be added back into the calling process.

target

system call

BPF filter

monitor

SECCOMP_RET_USER_NOTIF
SECCOMP_IOCTL_NOTIF_SEND
SECCOMP_IOCTL_NOTIF_ADDFD

kernel

The Seccomp Notifier - New Frontiers in Unprivileged Container Development, by Christian Brauner

Seccomp user-space notification and signals [LWN.net]

seccomp_unotify(2)

https://brauner.io/2020/07/23/seccomp-notify.html
https://lwn.net/Articles/851813/
https://man7.org/linux/man-pages/man2/seccomp_unotify.2.html

Containers, OCI and k8s
Seccomp profiles are JSON files part of
OCI spec defining the allowed, denied
or notifiable syscalls

BPF filters are generated using
libseccomp, based on the seccomp
profile of the container

Support in OCI for seccomp notifiers
with UNIX domain sockets

container

BPF
filter

monitorruntime

seccomp.json

3. pass seccomp
notifier fd

2. launch the container
with the BPF filter

1. generate BPF filter

4. monitor
container

https://github.com/opencontainers/runtime-spec/blob/main/config-linux.md#seccomp
https://github.com/seccomp/libseccomp
https://github.com/opencontainers/runtime-spec/pull/1074

Existing solutions using seccomp notifiers

Existing solution using seccomp notifiers:
● LXD
● Kinvolk seccomp agent

What do they have in common:
● Implement a seccomp notifier handler per syscall
● A new syscall or behavior ↝ new code
● Not easily reusable
● Require understanding of seccomp notifiers

https://linuxcontainers.org/lxd/
https://github.com/kinvolk/seccompagent

Seitan
Syscall Expressive Interpreter, Transformer and Notifier

https://seitan.rocks/

https://seitan.rocks

recipe

match: ioctl(TUNSETIFF) ↝ action1

match: mknod(path) ↝ action2

match: mount(path) ↝ action3

match: connect(path) ↝ action4

Idea
● recipes describe matches of syscalls and

arguments and corresponding action
● seitan-cooker follows the recipe and

builds:
○ BPF program
○ gluten: a bytecode representation

of matches and actions
● seitan-eater loads the filter and launches

target process
● seitan loads the bytecode, monitors the

notifier, matches on syscalls and
executes actions

seitan project

https://seitan.rocks/

unprivileged contextprivileged context

Flow

12

gluten

eater

target

seitan

seccomp
filter

cooker

recipe.json

G
en

er
at

e
in

pu
ts

Ex
ec

ut
io

n

monitor

Why seitan
● Declarative approach, not imperative

○ Improved visibility, single auditing point for privileged operations

● Flexible, with no extra coding necessary

○ Admins and tools only need to define the JSON recipe

● Generic

○ Independent and self-contained tool for specifications and generation of

BPF programs and action bytecodes

○ gluten (bytecode) and BPF program can be generated and signed separately

before running the workload

Why seitan
● Declarative approach, not imperative

○ Improved visibility, single auditing point for privileged operations

● Flexible, with no extra coding necessary

○ Admins and tools only need to define the JSON recipe

● Generic

○ Independent and self-contained tool for specifications and generation of

BPF programs and action bytecodes

○ gluten (bytecode) and BPF program can be generated and signed separately

before running the workload

for i, volume := range vmi.Spec.Volumes {
 if volume.ContainerDisk != nil {
 diskTargetDir, err := containerdisk.GetDiskTargetDirFromHostView(vmi)
 if err != nil {
 return nil, err
 }
 diskName := containerdisk.GetDiskTargetName(i)
 // If diskName is a symlink it will fail if the target exists.
 if err := safepath.TouchAtNoFollow(diskTargetDir, diskName, os.ModePerm); err != nil {
 if err != nil && !os.IsExist(err) {
 return nil, fmt.Errorf("failed to create mount point target: %v", err)
 }
 }
 targetFile, err := safepath.JoinNoFollow(diskTargetDir, diskName)
 if err != nil {
 return nil, err
 }
 sock, err := m.socketPathGetter(vmi, i)
 if err != nil {
 return nil, err
 }

 record.MountTargetEntries = append(record.MountTargetEntries, vmiMountTargetEntry{
 TargetFile: unsafepath.UnsafeAbsolute(targetFile.Raw()),

“match”: {
 “openat”: {
 “path”: “/disk”
 }
},
“call”: {
 “openat”: {
 “path”: “/mapped”
 },
 “ret”: “fd”
},
“fd”: {
 “src”: { “tag”: “fd” } },
 “return”: true
}

Use cases

Improving security posture by reducing privileges
● Rootless containers

○ Removing capabilities by impersonating only the necessary syscalls

● Argument introspection
○ Enable safe checks on dereferenced memory (strings, structs, buffers)

through deep copy: arguments point to local copy, instead of original
(race-prone) data

● Syscall counters
○ Fine grained control of process behaviour by counting syscall executions

Use cases

Testing
● Error injection on a syscall (e.g. return different error type)

● Mocking a particular syscall

● Inject a delay on a syscall (sleep + continue the syscall)

Application profiling
● Tracing syscalls executed by the target process

Resource allocation and management

● File descriptor injection, alternative way to SCM_RIGHTS and pidfd_getfd(2)

● Socket communication for containerised applications

Example: impersonate a syscall

● Filtered syscall: mknod()

● Context: caller’s mount

namespace

● Action: replay mknod()

● Result: execute mknod only

for a subset of minor

numbers

"match": [
 { "mknod":
 {
 "path": { "tag": "path" },
 "mode": { "tag": "mode" },
 "type": { "tag": "type" },
 "major": 1,
 "minor": { "value": { "in": [3, 5, 7, 8, 9] }, "tag": "minor" }
 }
 }
],
"call":
 { "mknod":
 { "path": { "tag": { "get": "path" } },
 "mode": { "tag": { "get": "mode" } },
 "type": { "tag": { "get": "type" } },
 "major": 1,
 "minor": { "tag": { "get": "minor" } }
 },
 "context": { "mnt": "caller" }
 },
"return": { "value": 0, "error": 0 }

Example: syscall mocking and error
injection

● Filtered syscall: connect()

● Result: pretend success on the

first path, report permission

denied on the second path

{
 "match": [
 { "connect": {
 "addr": {
 "family": "unix",
 "path": "/test1.sock"}
 }
 }
],
 { "return": { "value": 0, "errno": 0 } }
},
{
 "match": [
 { "connect": {
 "addr": {
 "family": "unix",
 "path": "/test2.sock"
 }
],
 { "return": { "value": 0, "errno": -1 } }
}

BPF program

The BPF program is a binary search tree
indexed by system call number:
● search complexity, average: 𝒪(log n)
● optimisation targets: many, as opposed

to libseccomp simpler goal of keeping
unfiltered calls fast. Notified calls need to
be fast too: multiple terminal elements

Blocked syscall are treated as filtered
syscalls: those can be slow.
Checking as much as possible in BPF
program: numeric argument conditions
sequentially linked to leaves

42

16

165

308

272158 323

TCSETS

NS_GET_USERNS

connect()

ioctl() unshare()

mount()

setns()

prctl() userfaultfd()

ioctl(…, NS_GET_USERNS)
(nr: 16)

sched_setattr()
(nr: 314)

…RET_ALLOW

…RET_USER_NOTIF

Overhead

● Pushing most argument checks into BPF program: supervisor is used infrequently
○ no mandatory implementation of full syscall set (cf. gVisor, different goals)
○ we can do a bit better once and if eBPF becomes friends with seccomp

● We’re rather on the control path, not so much on the data path
○ proxy as little as we can (access control), not I/O or packet transfers

● The filter means some overhead anyway. Do we care? Quick micro-benchmark on
post-modern x86_64 laptop (don’t quote us on this!)
○ baseline: 10M lseek() in 6.7s
○ BPF program attached, 100 unvisited instructions, match on lseek(), single

compare and jump to the end, then RET_ALLOW: 10M lseek() in 8.2s
○ ~30ns per BPF instruction, 20-40 CPIs
○ …I guess we don’t care?

Revisiting eBPF Seccomp Filters, Jinghao Jia, Linux Plumbers Conference 2022

https://lpc.events/event/16/contributions/1352/

Bytecode memory layout

HEADER
version, seitan’s own seccomp filter, etc.

RO_DATA
constants from JSON recipe

INST
instructions

Seitan memory is statically allocated

HEADER, INST, and RO_DATA
sections are filled with gluten
bytecode as seitan starts

struct seccomp_data is set by the
kernel on a seccomp notification

DATA section for copying data at
runtime (struct, buffers, strings...)

read
only

DATA
temporary data

const struct seccomp_data
seccomp notification request: syscall
number, arguments, PID of target

Gluten and actions
OP_NR ↝ jump to matches matching the system call number

OP_CALL ↝ execute privileged syscall

OP_FD ↝ inject a file descriptor (atomically)
OP_RETURN ↝ set return and errno value or let the syscall go on

OP_COPY ↝ copy an argument
OP_LOAD ↝ load argument via /proc/PID/mem
OP_STORE ↝ store data at pointer argument of process
OP_CMP ↝ compare arguments
OP_BITWISE ↝ logic operations

OP_RESOLVEFD ↝ check if a file descriptor’s inode matches a path

seccomp notify replies

memory operations

System call context

The supervisor executes a system call on behalf of the target – with a

fresh, verified copy of the arguments

Context specification:

● namespace (mount, network, PID, cgroup, etc.)

● working directory

● UID/GID

Tags

Set and get references between arguments (and
conceptually distinct fields within arguments

Examples:
● a privileged system call creates a file descriptor

used to replace the original descriptor in the
target process

● derive arguments from original system call’s
arguments

 { “tag”: { "set": "x" } }

 { “tag”: { "get": "x" } }

X

Security: how bad is it?

Seitan: security topics

● Sometimes, all we need to do is to open a well-defined path from a

different mount namespace – not to tell another component that it

should open a given ../../../../path from a different mount

namespace and return a file descriptor corresponding to it

● Unified declarative approach to privileged operations: obvious benefit

● No parsing in supervisor, ~500 LoC, easy to audit, static memory only

● Surface: malicious JSON, malicious bytecode, malicious BPF program

● …your concern here.

https://github.com/alicefr/community/blob/seitan/design-proposals/seitan/security-aspects-seitan.md

Demo

Takeaways

● Tool for filtering and executing privileged syscalls

● Capability and privileged reduction given to containers

● Declarative vs. imperative way

● Filtered syscalls with actions into a single file

● More (and more coming) at https://seitan.rocks

https://seitan.rocks

Future plans

● Finish modeling the system calls we want (maybe “all”, or maybe
only 50-100 of them?), clean up code, man pages, packages…

● Get feedback on the idea right after this slide
● Offer seitan integration with container engines (e.g. Podman,

cri-o, containerd...) and virtualisation engines (KubeVirt use
cases)

● Extend Kubernetes to support already generated BPF filters

https://github.com/kubevirt/community/pull/202
https://github.com/kubevirt/community/pull/202

Credits

● Andrea Arcangeli: originally wrote seccomp and told us this isn’t
necessarily a bad idea, offered extensive feedback

● Christian Brauner: extended seccomp BPF with user notification
and excellent documentation all along

● Ľuboslav Pivarc, Vladik Romanovsky (KubeVirt developers):
feedback, endless discussions and encouragement

Q&A

